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Abstract

Over the past decade the numerical treatment of singularly perturbed problems has advanced significantly
with the advent of asymptotic-preserving (AP) techniques [1]. For problems characterized by a small
parameter ε, AP schemes are designed to work accurately in both the limit when the parameter is of order
unity and when it approaches zero. AP schemes rely on a suitably constructed implicit part to assure the
correct asymptotic behavior, thereby overcoming the limitations of a generic fully implicit or semi-implicit
scheme. In this work, we present two applications of AP methods to the context of plasma physics.
The first application concerns the strongly anisotropic transport of a scalar, such as temperature, in
magnetic island geometry. Here the small parameter ε is the ratio of the perpendicular to the parallel
transport coefficient. A suitable AP method is constructed which works on a uniform grid, with both open
and closed field lines, without requiring alignment of the grid to the magnetic field. The strength of the
method is demonstrated for values of the small parameter as low as ε = 10−20 in the case of both static
and rotating magnetic islands [2].
As a second application, we have considered reduced resistive MHD system (RMHD) in two dimensions.
Numerical simulations of RMHD are notoriously challenging because of the disparate time-scales, encom-
passing the Alfvén wave period and the resistive diffusion time, and because of the formation of thin
internal layers, especially in the nonlinear phase. Upon suitable rescaling of the original equations, the
small parameter ε turns out to be the inverse of the square of the Lundquist number S, ε = S−2. The new
scheme is specifically designed to study the long time scale dynamics with large time steps on the resistive
time scale. The tearing mode evolution and the formation of a magnetic island are considered as a test
case. One finds that the scheme is able to reproduce efficiently the three regimes of the island dynamics,
linear, Rutherford growth and saturation, with good agreement with known analytical results [3] for this
problem. The scheme is shown to work well at ε = 10−16 (Lundquist number S = 108), with the quality
of the simulation depending essentially on the resolution necessary to treat the small visco-resistive layer
occurring around the separatrix [4].
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Asymptotic Preserving (AP) methods

• Call Pε a problem depending on a small parameter ε. Example: resistive MHD,
with ε being the resistivity.

• Call P0 the limiting problem as ε→ 0. Think of ideal MHD.

• If P0 has a different mathematical nature than Pε, problems usually arise. Think
again of ideal MHD.

• Call P h
ε a discretised version of Pε, h being the set of discretisation parameters (time

step, grid spacing,...).

• Consider P h
0 , the limiting version of the discretised problem. If its solutions are

consistent solutions of P0 the scheme is called AP.

• If in addition the accuracy in the discretisation parameter h is maintained the scheme
is asymptotically accurate (AA).

AP is about taking the limit in a controlled way

AP methods: many ingredients

• Judicious choice of the part of the problem to be treated implicitly

• Suitable implicit and accurate time advancing integrators, such as DIRK (diagonally
implicit Runge-Kutta)

• Reformulation of the problem using auxiliary variables

• Micro-macro decomposition of the original variables in an ε-dependent and in an
ε-independent part.

• Addition of suitably chosen stabilizing terms: key to limit the condition number

No black box solutions!



Growth and saturation of a magnetic island

Reduced MHD equations in 2D, rescaled

∂t∆φ+ [φ,∆φ] = 1
ε [ψ,∆ψ] + ∆2φ

∂tψ + [φ, ψ] = ∆ψ −∆ψe

Here ε = S−2 is the inverse squared Lundquist number, ε ∼ 10−16 ,
and time is normalised to the resistive time scale.

The three regimes of island
evolution

a) Linear regime, exponential growth,
island width w � δ (linear layer width)

• δ ∼ ε1/6k−1/3

• γ ∼ 1/δ ∼ ∆′ε−1/6k1/3

b) Rutherford growth, δ � w � ws
(saturation size)

• w(t) = 1.22∆′t

c) Saturation

• ws = 2.44∆′, with a coefficient
dependent on the model equilib-
rium [3]

Generalized Rutherford’s equation

dw
dt = 1.22 (∆′ − αw)

with α ≈ 0.41J ′′0 /J0

Time evolution, fixed ε = 10−6

Time evolution, convergence as ε→ 0

Theory vs simulation

∆′ ẇ (Rutherford) ws
numerical result 0.66 0.84∆′ 2.24∆′

analytic estimate 0.65 1.22∆′ 2.44∆′



Magnetic island evolution: vorticity and current density

Number of fixed-point iterations per time step, and condition number of the system
matrix as functions of ε, generic implicit scheme(IMP) and AP scheme (MM)



Transport in a magnetic island

Anisotropic diffusion equation

∂tT−
1

ε
∇‖·(A‖∇‖T )−∇⊥·(A⊥∇⊥T ) = 0

where ε ∼ 10−10 is the ratio of the per-
pendicular to the parallel conductivity.

The magnetic field is of the form

B = ∇× (ψẑ) + ẑ

with ψ given by

ψ(x, y) = −1
2x

2 + b̂x cos(kyy − ωt),

so that

∇‖ = x∂y + kyb̂x sin(kyy − ωt)∂x

Magnetic island

h = 0.1 h = 0.00625

ε = 1 ε = 10−20

Error Analysis

Relative L2-errors between the ex-
act solution and the computed so-
lution, as a function of ε (above)
and as a function of the timestep
(below)

(P ) Standard scheme

(EAP ) Euler-AP method

(EAPS) Euler-APS method
(stabilized)

(RKAP ) DIRK-AP scheme

(RKAPS) DIRK-APS scheme
(stabilized)



Temperature profiles
(above) and gradients
(below), static island

Left: Fixed tempera-
ture difference, Dirichlet
boundary conditions
Right: Fixed energy in-
jection. Neumann bound-
ary conditions

Temperature profiles,
rotating island,

various frequencies

Left: across the O-point
Right: across the X-point

The profile is progres-
sively more and more av-
eraged by the island ro-
tation when the frequency
increases


