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Tokamaks vs. stellarators

Tokamak Stellarator

d
dΦ

= 0→ pΦ = mrvΦ + qRAΦ = const
trapped particles

remain on flux surface

d
dΦ
6= 0→ pΦ 6= const

trapped particles
drift radially outwards
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Trapped particles are radially confined in advanced stellarators

Classical stellarator
e.g. Large Helical
Device (LHD)

Quasi-symmetry
e.g. Helically Symmetric

Experiment (HSX)

Quasi-isodynamicity
e.g. Wendelstein

7-X (W7-X)

Magnetic field strength |B| on the flux surface of r/a = 0.5

Trajectory of a trapped particle
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Low neoclassical transport motivates turbulent transport optimisation

Neoclassical transport: already shown to be below the level of tokamaks
(down to a collisionality of ν∗ = 10−3)

Anomalous transport is expected to be the dominant transport channel for
outer radii

I investigate microinstabilities which trigger small-scale turbulence

I Ion-temperature gradient (ITG) mode - limits ∇T
I Trapped-electron mode (TEM) - limits ∇n

Large configuration space in 3D: opportunity for turbulence optimisation

I What we already know from linear theory - analytically and numerically

I How these microinstabilities behave nonlinearly

I How these observations can help us to optimise stellarators for both
neoclassical and turbulent transport
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We can show analytically: the more particles with ω∗a · ωda < 0 the better

I We define

Pe = −Re

∫
dl

B

∫
d3v e

(
v‖b̂ + vd

)
· ∇φ∗J0fe1

∼= j · E

as rate of the gyrokinetic energy transfer from the field to electrons
[Proll, Helander, Connor and Plunk, PRL 2012] and [Helander, Proll and Plunk, PoP 2013]

I Pe < 0 for a destabilising influence of the kinetic electrons

I TEM rely on a resonance between the two frequencies ωT
∗e ·ωde > 0

Pe more negative the higher the fraction of trapped
particles with “bad average curvature” ωde < 0

I “bad curvature” κ if the field lines curve
towards the surface of the plasma

I if particle trapped in region of bad local
curvature κ → ωde < 0

I worst average curvature if B and κ are in phase
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We can show analytically: the more particles with ω∗a · ωda < 0 the better

I Energy transfer rate for the electrons near marginal stability (γ → 0)

Pe =
πe2

Te

∫
dl

B

∫
d3vδ(ω − ωde)ωde(ωde − ωT

∗e)|J0φ|2fe0

ω∗e ∝ ky
d ln na
dr

- diamagnetic frequency, defined to be < 0 here

ωde = k⊥ · vd,a - precessional drift frequency, bad curvature corresponds to < 0
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Quasi-isodynamic configurations are stable towards TEMs

I Contours of constant |B| = |∇ψ ×∇α|
poloidally closed

ψ = toroidal flux, radial coordinate

α = field line label, binormal coordinate

I bounce averaged radial drift vanishes
vd · ∇ψ = 0

I Action integral of the bounce motion -
adiabatic invariant

J(ψ) =
∫
mv‖dl

I in maximum-J-configurations with
∂J/∂ψ < 0:

I favourable bounce-averaged curvature for
all orbits → TEMs are stabilised

Subbotin et al. Nucl. Fusion 46 2006, courtesy of Y. Turkin

I direction of the precessional drift

ω∗a · ωda < 0

ω∗a ∝ kα
d ln na
dψ

- diamagnetic frequency

ωda ∝ −kα
∂J
∂ψ

- precessional drift frequency
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I ωde(λ) ∝
∫ z2

z1

κ(1−λB(z)/2)√
1−λB(z)

dz

with local curvature κ, pitch angle λ and
bounce points zi

I if particle trapped in region of bad local
curvature κ → ωde < 0

I worst average curvature if B and κ are in phase
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Numerical Simulations

I start with realistic stellarator
equilibrium created with

VMEC

[Hirshman and Whitson, Phys. Fluids 26 (1983)]

I create flux tube geometry usable by
GENE with

GIST
[Xanthopoulos, Cooper, Jenko, Turkin, Runov and Geiger,

PoP 16 (2009)]

I perform linear electrostatic collisionless
flux tube simulations with

GENE

[Jenko, Dorland, Kotschenreuther and Rogers, PoP 7 (2000)]

Example for a flux tube

M. Barnes, PhD thesis 2008
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Simulated geometries: HSX and W7-X

Magnetic field strength B, red = Bmax , blue = Bmin.

HSX

I quasi-helically symmetric
stellarator

I aspect ratio: A = 8

W7-X

I approaching quasi-isodynamicity

I aspect ratio: A = 10

I trapped particles in the almost
straight sections
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Simulated geometries: HSX and W7-X

Magnetic field strength B and curvature κ along a magnetic field line.
z = 0 in the outboard midplane of the bean plane.

HSX
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I bad curvature and magnetic well
overlap

I ω∗e · ωde > 0 for a large fraction of
trapped particles

W7-X
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I bad curvature and magnetic well
separated at center of the flux tube

I ω∗e · ωde > 0 for a smaller fraction
of trapped particles
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W7-X has fewer particles with ω∗e · ωde > 0 and lower TEM growth rates

I W7-X has lower linear growth rates
I The critical gradient in both stellarators is lower than in a typical tokamak
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The enhanced stability of W7-X prevails also nonlinearly

I W7-X has lower TEM heat flux than a typical tokamak

I As soon as there is a density gradient present, W7-X has lower heat fluxes
than DIII-D
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The proxy Q allows a quick estimate of the TEM stability of a configuration

I Proxy function as a measure for TEM activity, based on geometry only
and thus easy to compute (a lot faster than simulation)

I Idea: reduce energy transfer rate → minimise average bad curvature

I Proxy Q for the heat flux: average bad curvature, minimise this for each
flux tube

Q = −
∫ 1/Bmin

1/Bmax

ωd (λ)dλ

ωd (λ) =

∫ +`0

−`0

H

(
1

λ
− B(`)

)
ωd (λ, `)

d`√
1− λB(`)

I STELLOPT: optimisation of 3D equilibria created by VMEC via proxy
functions
[D.A. Spong et al 2001 Nucl. Fusion 41 711]

I minimise Q for different flux tubes on different flux surfaces
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A first TEM optimisation of HSX has been achieved

I TEM-proxy has been reduced significantly, but only by relaxing the
requirement of helical symmetry

I The neoclassical transport has increased slightly (εeff = 0.45%→ 2.5%)

HSX (initial) HSX (TEM-optimised)

Magnetic field strength
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z = 0 in the outboard midplane of the bean plane.
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The proof-of-principle optimisation was successful

A reduction of growth rates is achieved over a large range of wave vectors and
gradients.
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The proof-of-principle optimisation was successful

The heat flux (here at a/Ln = 3, a/LTe = 0) was reduced significantly.
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Conclusions and Outlook

Conclusions:
TEM stability:

I analytically: kinetic electrons are stabilising if ω∗e · ωde < 0.

I numerically: W7-X, where more particles have ω∗e · ωde < 0, has lower
TEM growth rates and TEM heat flux compared with HSX. ITGs are also
more stable if there is a finite density gradient.

TEM optimisation:

I developed proxy functions for use in STELLOPT

I proof-of-principle optimisation of HSX towards lower TEM activity
successful, though new equilibrium not experimentally realisable

Outlook

I validate model for TEM optimisation experimentally (on HSX)

I explore optimisation space
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