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Ohmic current drive provides a source of free energy
and the RFP behaves as a driven-damped system.

• Discrete flux-conversion events
are observed during a discharge

• Plasma activity sustains
toroidal flux against resistive
decay

Den Hartog et. al. PoP 6 No. 5 (1999)
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1 Current profile is initially stable

2 Ohmic current preferentially driven in the
core where B is most aligned with E

3 Large gradients of J‖ develop, destabilizing
core-resonant magnetic modes

4 Core modes couple nonlinearly to edge
modes and flatten J‖

• The sawtooth cycle occurs multiple times in a typical RFP discharge
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A variational theory based on selective decay of ideal
invariants is used to predict the relaxed state.

• Taylor1 recognized that the magnetic helicity (K), a topological
measure of the linkedness of magnetic field, is more robustly conserved
than the magnetic energy in a resistive plasma

K ≡
∫

A ·Bd3x ∂K
∂t

=

∫
E ·Bd3x ∼

∫
η

µ0

[∑
k

kB2
k

]
d3x

WB ≡
∫

B ·B
2µ0

d3x
∂WB

∂t
=

∫
E · J
µ0

d3x ∼
∫

η

µ0

[∑
k

k2B2
k

]
d3x

• Variational theory conserves magnetic helicity while minimizing energy

0 = δ

[
WB −

λ

2µ0
K
]

=

∫
δA

µ0
· [∇×B− λB] d3x → ∇×B = λB

• Relaxed state is force-free (J×B = 0) with λ a global constant

• The axisymmetric solution yields the Bessel function model (BFM)

Bz = B0J0 (λr) Bθ = B0J1 (λr)

1Taylor, J. B. 1974. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields.
Physical Review Letters 33(19) 1139–1141

3 / 20



The crash phase of the sawtooth cycle brings the plasma
closer to the Taylor state, but it never achieves it.

• Non-dimensionalized measures of
field reversal and current drive

F ≡ 〈Bz〉 |r=a〈Bz〉 |vol

Θ ≡ 〈Bθ〉 |r=a〈Bz〉 |vol
=
λa

2

Ji et. al. PRL 74 No. 15 (1995)

Den Hartog et. al. PoP 6 No. 5 (1999)

• Experimental sawtooth cycle in
F −Θ space lies far from BFM

• Ohmic current drives plasma away
from BFM, but sawtooth crashes
drive plasma towards it
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Intrinsic plasma flow is observed in MST and appears
highly coupled with the relaxation dynamics.

• Significant parallel flow with strong shear between sawteeth

• Parallel flow flattens at crash suggesting strong coupling between the
flow and current relaxation

Kuritsyn et. al. PoP 16 055903 (2009)
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• In the core, dV‖/dt > 0 at the event
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Plasma flow can be introduced into a variational
formulation through the cross helicity.

• The cross helicity X ≡
∫

v ·B d3x is a measure of parallel flow2

∂X
∂t

=

∫ [
1

min
F ·B− (E + v ×B) ·∇× v

]
d3x

• Invariant in single-fluid ideal MHD for: β = 0 or barotropic plasma

F ·B
min

= − ∇p

min
·B = − 1

mi
∇h ·B = −∇ ·

(
hB

mi

)
dh

dn
≡ 1

n

dp

dn

• No reason to expect the cross helicity is better conserved than energy

∂X
∂t
≈
∫
−ηJ ·∇× v ∼

∫
η

[∑
k

k2vkBk

]
d3x

• Variational principles that minimize energy while conserving magnetic
helicity and cross helicity predict field-aligned current and flow

δ

[
WB +WK −

λ0

2µ0
K − (min)λ1X

]
= 0→

{
v = λ1B

∇×B = λ0

1−µ0minλ
2
1
B

2Finn, J. M., T. J. Antonsen. 1983. Turbulent relaxation of compressible plasmas with flow.
Physics of Fluids 26(12) 3540–3552
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An invariant hybrid helicity can be constructed if the
Hall term is included in the generalized Ohm’s law.3

• Hall physics in Ohm’s law changes the cross helicity evolution

∂X
∂t
∼
∫
− (E + v ×B) ·∇× v d3x →

∫
1

ne
(∇pe − J×B) ·∇× v d3x

• Introduce kinetic helicity

H ≡
∫

v ·∇× v d3x
∂H
∂t

=

∫
2

min
F ·∇× v d3x

• The hybrid helicity is a weighted sum of K, X , and H

H ≡ K+ 2
(mi

e

)
X +

(mi

e

)2
H

• The hybrid helicity is conserved in ideal Hall MHD if pi = 0 or the
plasma is barotropic

∂H

∂t
=

∫
− 2

ne
∇pi ·

[
B +

(mi

e

)
∇× v

]
d3x

3Turner, L. 1986. Hall Effects on Magnetic Relaxation.
IEEE Transactions on Plasma Science PS-14(6) 849–857
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Conservation of hybrid helicity depends on coupling.

• Magnetic helicity with a two-fluid Ohm’s law evolves as

∂K
∂t

=

∫ [
−2ηJ ·B + 2B ·

(
1
ne

∇pe
)]
d3x

• The B ·∇pe from Hall physics couples this to cross helicity evolution

2
(mi

e

) ∂X
∂t

=

∫ [
−2
(
mi
e

) (
1
ne

)
(J×B) ·∇× v + 2

(
mi
e

) (
1
ne

)
(∇pe) ·∇× v

]
d3x

+

∫ [
−2
(
mi
e

)
ηJ ·∇× v − 2B ·

(
1
ne

∇pe
)
− 2B ·

(
1
ne

∇pi
)
− 2B ·

(
1
ne

∇ ·Πi

)]
d3x

• The Hall terms in red and orange couple cross helicity and kinetic helicity(mi

e

)2 ∂H
∂t

=

∫ [
2
(
mi
e

) (
1
ne

)
J×B ·∇× v − 2

(
mi
e

) (
1
ne

)
∇pe ·∇× v

]
d3x

+

∫ [
−2
(
mi
e

) (
1
ne

∇pi
)
·∇× v − 2

(
mi
e

) (
1
ne

∇ ·Πi

)
·∇× v

]
d3x

• Terms in yellow vanish for either cold ions or barotropic ions
• Terms in purple vanish for an ideal plasma
• The isotropic viscosity piece of the stress in green also vanishes for an

ideal plasma, but not the gyroviscous part
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The variational problem that minimizes energy while
conserving hybrid helicity is singular in the limit di → 0.

• Ignoring variations in density, the variational problem yields

δ

[
WB +WK −

λ

2
H

]
= 0→


∇×B = µ0λ

[
B + mi

e
∇× v

]
minv = λmi

e

[
B + mi

e
∇× v

]
• Ignoring the terms that are higher order in mi

e ∼ di yields field-aligned
currents and flows

∇×B ≈ µ0λB minv ≈ λmi

e
B

• If the full equations are combined instead:(
λd2i
)
∇×∇×B = ∇×B− λB

(mi

e

)
v = d2i∇×B

• The system is singular in the limit that di → 0

• For di 6= 0, the value of λ must be chosen to satisfy initial conditions of
the invariants (i.e. toroidal flux, magnetic helicity, hybrid helicity)4

4Khalzov, I. V., F. Ebrahimi, D. D. Schnack, V. V. Mirnov. 2012. Minimum energy states of the
cylindrical plasma pinch in single-fluid and Hall magnetohydrodynamics.
Physics of Plasmas 19(012111)
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It is well-known that the variational problem is
mathematically ill-posed.5

• Consider minimizing F1 subject to u (0) = u (π) = 0

F1 (u) =

∫ π

0

u2 dx F2 (u) =

∫ π

0

(
du

dx

)2

dx

• With no constraint, the minimum is simply u = 0
• Attempt to constrain this through conservation of F2, a fragile quantity

0 = δ [F1 − λF2] =

∫ π

0

2δu

[
u+ λ

d2u

dx2

]
dx→


u = Co sin (αx)

α ≡ 1/
√
λ = ±1,±2,±3, ...

• Use the solution in both F1 and F2. With F2 invariant, C0 is determined

F1 (u) = C2
0
π

2
F2 (u) = α2C2

0
π

2
F1 = F2/α

2

• The minimum is α2 →∞ or λ→ 0, i.e. 0 = δ [F1 − λF2]→ 0 = δF1

5Ohsaki, S., Z. Yoshida. 2005. Variational principle with singular perturbation of Hall
magnetohydrodynamics.
Physics of Plasmas 12(064505)
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NIMROD, a 3D extended MHD code that includes
two-fluid physics, is used to study relaxation dynamics.

• The model includes two-fluid physics and first order FLR corrections:

∂n

∂t
= −∇ · (nv) +Dn∇2n

min

(
∂v

∂t
+ v ·∇v

)
= J×B−∇ (nT )−∇ ·Πiso −∇ ·Πgv

n

Γ− 1

(
∂T

∂t
+ v ·∇T

)
= −nT (∇ · v) + ∇ · (χn∇T )

∂B

∂t
= −∇×

[
−v ×B + 1

ne
(J×B−∇pe) + ηJ + me

ne2
∂J
∂t

]
Πiso = νminW W = ∇v + ∇vT − 2

3
(∇ · v) I

Πgv =
mipi
4eB

[
b̂×W ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·W × b̂

]
• Simulation Parameters:

S = 20, 000 Pm = ν/η = 1 χ/η = 0.1 = Dn/η τA = 1

β = 0.1 di/a = 0.173 ρs/a = 0.05 me/mi = 2.72 · 10−3

• MHD all not underlined, Cold Ion + red, Warm Ion + red & blue
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Diagnostics examine which terms are responsible for
changes in magnetic energy and helicity in simulations.

• NIMROD6 represents fields with C0 finite elements in the R−Z plane and
a Fourier series in φ

• Integration-by-parts is used to eliminate second derivatives:∫
2T∇ · (Dn∇n) d3x =

∫
[∇ · (2TDn∇n)− (Dn∇n) ·∇ (2T )] d3x∫

v · (∇ ·Π) d3x =

∫ [
∇ · (Π · v)−Π : (∇v)T

]
d3x

• Auxiliary fields are required for higher-order derivatives∫
α · (∇ ·Π) d3x =

∫ {
∇ · [Π ·α]−Π : [∇α]T

}
d3x α = ∇× v

• Terms are constructed by transforming to real space and aliasing errors
may be present for combinations of more than two fields∫

1

ne
(J×B) ·∇× v d3x

6Sovinec, C. R. et. al. 2004. Nonlinear magnetohydrodynamics simulation using high-order
finite elements.
Journal of Computational Physics 195 355–386 12 / 20



The magnetic helicity is more robustly conserved than
the magnetic energy at the relaxation event.
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• Dashed vertical lines indicate the time of minimum magnetic energy
• The magnetic helicity has changed by only a small percentage while the

energy has dropped by ∼ 2%
• The hybrid helicity is very nearly equal to the magnetic helicity
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The constant loop voltage injects magnetic energy and
helicity into the system.

• The magnetic energy evolves as

∂WB

∂t
= −

∫
E×B

µ0
· n̂dA+

∫ [
v ×B · J− ηJ2 + J · 1

ne
∇pe

]
d3x

• The only tangential electric field is the constant loop voltage, which
balances the contributions from the equilibrium Eeq = −veq ×Beq + ηJeq

∂WB

∂t
=

∫ [
(v ×B− veq ×Beq) · J− η (J− Jeq) · J + J · 1

ne
∇pe

]
d3x

• The relative magnetic helicity Krel ≡
∫

(A−A′) · (B + B′) d3x evolves as

∂K
∂t

= −2

∫ [
E ·B−E′ ·B′

]
d3x = −2

∫ [
ηJ ·B−B · 1

ne
∇pe −E′ ·B′

]
d3x

• The reference fields must have the same tangential electric field and total
magnetic flux so that the relative helicity evolution is

∂K
∂t

=

∫ [
−2 (veq ×Beq) ·B− 2η (J− Jeq) ·B + 2B · 1

ne
∇pe

]
d3x
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The magnetic energy evolution over the crash is
dominated by the resistive term.
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• The dashed red curve shows a finite difference estimate of ∂WB

∂t

∂WB

∂t
=

∫ [
(v ×B− veq ×Beq) · J− η (J− Jeq) · J + J · 1

ne
∇pe

]
d3x
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The electron pressure in magnetic helicity evolution is
weak and there is little coupling of K and X .
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• The dashed red curve shows a finite difference estimate of ∂K
∂t

∂K
∂t

=

∫ [
−2 (veq ×Beq) ·B− 2η (J− Jeq) ·B + 2B · 1

ne
∇pe

]
d3x
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Including the ion gyroviscosity significantly alters the
evolution of the cross helicity at the relaxation event.
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• The cross and kinetic helicities are normalized by the initial value of the
magnetic helicity

• The kinetic helicity evolution appears similar for all cases
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Cross helicity evolution is dominated by the viscous and
gyroviscous pieces in simulations.

• Variational theories that conserve hybrid helicities neglect
viscous dissipation and do not account for gyroviscous effects

4000 4200 4400 4600 4800
t/τA

-3e-6

-2e-6

-1e-6

0

1e-6

[
(
aB 2

0 /τA
)
Vol]

Warm Ions: Cross Helicity Evolution

-3e-4

-2e-4

-1e-4

0

5e-5
[
(
aB 2

0

)
Vol]

Int. Over: t/τA =[4009,4426]

Warm Ions: Integrated Power

2
(mi

e

) ∂X
∂t

=

∫ [
−2
(
mi
e

) (
1
ne

)
(J×B) ·∇× v + 2

(
mi
e

) (
1
ne

)
∇pe ·∇× v

]
d3x

+

∫ [
−2
(
mi
e

)
ηJ ·∇× v − 2B ·

(
1
ne

∇p
)
− 2B

ne
· (∇ ·Πiso)− 2B

ne
·
(
∇ ·Πgyr

)]
d3x
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The kinetic helicity evolution is under-resolved but has
large contributions from viscosity and gyroviscosity.

• The kinetic helicity contribution is small: H ∼ 10−1X and H ∼ 10−4K

H =
[
aB2

0V ol
] ∫ {

Â · B̂ + 2

(
di
a

)
v̂ · B̂ +

(
di
a

)2

v̂ ·
(
∇̂× v̂

)}
d3x̂
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(mi

e

)2 ∂H
∂t

= 2
mi

e

∫ [
J×B−∇p−∇ ·Πiso −∇ ·Πgyr

]
· ∇× v

ne
d3x
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Conclusions

• Relaxation theories attempt to predict the preferred plasma state by
minimize some quantities while conserving others

- Ideal invariants in a two-fluid model are the energy and the hybrid helicity
- Minimizing the energy while conserving the hybrid helicity results in an

ill-posed mathematical problem (see Ohsaki ref., slide 10)

• Numerical simulations examine the evolution of the ideal invariants within
the extended MHD model

- Magnetic helicity is robustly conserved relative to magnetic energy
- Cross helicity evolution is dominated by viscosity and gyroviscosity
- First order FLR effects (ion gyroviscosity) has not been included in any

relaxation theories but warm ion simulations suggest it is important

• Diagnostics measuring helicity evolution accurately capture the large scale
dynamics

- Kinetic helicity evolution appears under-resolved
- However, it is the smallest contributor to hybrid helicity
- To the order of the cross helicity, the evolution is well-resolved
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