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Background

Background

1 Drift waves / micro-instabilities, universally in magnetized plasmas,
believed to be cause of anomalous transport.

2 Conventional ballooning structures peak at outboard side of cross section,
with poloidal angle position θp ' 0. Unconventional, |θp| ' or < π/2 have
shown exist by several authors [Xie12, Dickinson14, Singh14, Fulton14].

3 We will show even more general unconventional results. Theory to
explain them is also provided.

4 To find differences of micro-instabilities between H-mode and L-mode.
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Trapped electron modes

TEMs in GTC

Fig.1: Conventional (a) &
unconventional (b-i) ballooning
structures of TEMs in GTC
simulations. (a) weak gradient
L-mode (Cyclone case)
parameter, (b)-(i) strong
gradient H-mode parameters.
Collision included in (e) & (g).
Flow excluded in all cases.

Figure 1: TEMs in GTC.
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Trapped electron modes

TEMs in GTC

Parameters: HL-2A H-mode. Single-n (n = 5− 30).

B0 = 1.35T , a = 40cm, R0 = 165cm, q = 2.5− 3.0, s = 0.3− 1.0,
R0/LT = 80− 160 and Te(r) = Ti (r), ne(r) = ni (r), η = Ln/LT ' 1.0.

Most unexpected unconventional new features:

a. mode can have anti-ballooning structure (|θp| > π/2, e.g., Fig.1g);

b. mode can have multi-peak positions (e.g., Fig.1b).
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Trapped electron modes

TEMs Fourier δφm(r)

δφ(r , θ, ζ) = e inζ
∑

m δφm(r)e−imθ

Fig.2: Corresponding polodial cross
section mode structures of (a)-(d)
taken from Fig.1 (a), (b), (g) and
(i), respectively.
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Figure 2: <[δφm(r)] for conventional and
unconventional mode structures.
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Trapped electron modes

TEMs Fourier δφm(r)

Conventional δφm ' δφm+1; unconventional relation between δφm and δφm+1

no longer apparent.

Fig.2b, several δφm are not Gaussian shapes as in Fig.2a; two strongest
Fourier modes in Fig.2c&d have anti-phase, i.e., δφma ' −δφmb

.
Difference of Fig.2c&d is mb = ma + 1 in Fig.2c but mb = ma + 3 in Fig.2d.
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Ion temperature gradient mode

ITG in GTC

Reducing density gradient, ITG can
unstable. Adiabatic electron in
simulations, to exclude TEM.

Fig.3: (a & b) Anti-ballooning
structure. (c & d) Two modes
co-exist (or, one mode with two
radius peaks) at different radius
positions. One θp ' π/2, another
θp ' −π/2.

Figure 3: Unconventional ITG in GTC.
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Ion temperature gradient mode

ITG in GTC

Unconventional mode structures still exist and can be more rich. Thus,
these unconventional properties can be common for drift waves, not
limited to TEM.

Anti-ballooning ITG shown in Fig.3a&b. Actually, mode structures with
global profiles and multi modes co-exist in initial value simulations will be
more complicated. Two modes with similar growth rates can be excited in
different radius (Fig.3c&d). Multi modes coexist with close peaking positions
in initial simulation can also lead θp = θp(t), i.e., ‘rotate’ with time.

These unconventional linear behaviors in GK simulations can be understood
from the below eigen analysis.
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Eigen equation

Starting equation

Qualitative model theory by solve below model eigenvalue problem[
ρ2

i
∂2

∂x2 − σ2

ω2

(
∂
∂θ + ikθsx

)2

− 2εn

ω

(
cos θ + i sin θ

kθ

∂
∂x

)
− ω−1

ω+ηs
− k2

θρ2
i

]
δφ(x , θ) = 0, (1)

σ = εn/(qkθρi ), ηs = 1 + ηi , x = r − rs , the poloidal wave number kθ = nq/r .
Eq.(1) can be derived from gyrokinetic theory with adiabatic electron assumption,
thus can be used to study ITG.
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Eigen equation

We solve...
1D: Corresponding 1D equation in ballooning space{

σ2

ω2
d2

dϑ2 + k2
θρ2

i [1 + s2(ϑ− ϑk)
2] + 2εn

ω [cos ϑ

+s(ϑ− ϑk) sinϑ] + ω−1
ω+ηs

}
δφ̂(ϑ, ϑk) = 0, (2)

ϑk ballooning-angle parameter.

2D: Using Fourier basis δφ(x , θ) =
∑

m ume−imθ, Eq.(1) can rewritten to

k2
θρ2

i s
2 ∂2um

∂z2 + σ2

ω2 (z −m)2um − εn

ω

[(
1− s ∂

∂z

)
um−1

+
(
1 + s ∂

∂z

)
um−1

]
−

(
ω−1
ω+ηs

+ k2
θρ2

i

)
um = 0, (3)

z = kθsx . To solve eigenvalue problem Eq.(3), only several m modes need
kept.
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Solutions

Analytical investigations

With suitable approximations, Eqs.(2) & (3) reduced to Weber equation
u′′ + (bx2 + a)u = 0, solutions

eigenvalues a(ω) = i(2l + 1)
√

b(ω)

eigenfunctions u(x) = Hl(i
√

bx)e−ibx2/2,

Hl is l-th Hermite polynomial and l = 0, 1, 2, ..., series eigenstates.
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Solutions

Numerical method

Eqs.(2) & (3) to ω3M3X + ω2M2X + ωM1X + M0X = 0. Finite difference
discrete yields sparse matrices Mi (i = 0, 1, 2, 3).

Using companion matrix, to AY = ωBY, Y = [X1,X2,X3] ≡ [X, ωX, ω2X],
A = [O, I,O;O,O, I;−M0,−M1,−M2], B = [I,O,O;O, I,O;O,O,M3].

All solutions of the system can obtained by standard matrix solver.
Advantage: can show completely solutions of the system and help to
understand transition and distribution of them.

Solutions in [Xie12,Dickinson14] using iterative solver are actually only
one of solutions and usually not most unstable or most important, due to
initial guess.
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Solutions

Eigen 1D solutions

1D Eq.(2), unconventional
structures either most unstable
solution l 6= 0 or ϑk 6= 0. Both can
happen at strong gradient. Most
unstable solution ϑk 6= 0 has
discussed by others (c.f., [Singh14]).

Fig.4: Weak gradient (εn = 0.5),
most unstable solution ground
state (a&b), conventional structure.
Strong gradient (εn = 0.2), most
unstable solution not ground
state (c&d), unconventional.
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Figure 4: Eq.(2), series solutions exist. (s = 0.8,
kθρi = 0.4, q = 1.0, ηs = 3.0 and ϑk = 0)

Important Result!!!
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Solutions

Eigen 2D solutions

Almost all mode structures in
Figs.1 & 3 also found in 2D
solutions Eq.(3). Two examples in
Fig.5. Thus, series conventional and
unconventional solutions found in
both 2D eigen solver and GTC initial
simulations.

Condition εn < εc , critical gradient
parameter εc depends on other
parameters. GTC simulations HL-2A
parameters, typical critical
gradient value R0/LT = 40− 120.

Figure 5: Typical unconventional mode
structures from 2D eigen solution for Eq.(3). (b)
similar Fig.1(c&d), and (c&d) similar
Fig.3(c&d).
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Solutions

Physical picture

With strong gradient the most unstable solution can shift from ground state
to other non-ground states, which is analogous to the quantum jump
between energy levels.

Physically, the ‘quanta’ jump behaviors can be understood from the
effective potential[Chen80]. Jump happens from one potential well to
another, which leads to different energy levels.
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Solutions

Discussions

Strong gradient (H-mode) l 6= 0 v.s. weak gradient (L-mode) l = 0, indicate
different transport behavior between H-mode and L-mode.

Conventional, neighboring Fourier um ' um+1, effective correlation length
estimated as width of radial envelope of the modes, say, ∆A. Whereas,
unconventional, especially anti-ballooning, um ' −um+1, i.e., a 180◦ phase
shift for neighboring Fourier, which can change correlation length to distance
of neighboring mode-rational surfaces ∆rs .

Considering that ∆rs � ∆A, we can expect that H-mode can have better
confinement.

However, to fully understand, systematic study of nonlinear behavior of
transport required (See backup slides, HL-2A H-mode TEM nonlinear
indeed differs from L-mode!!).
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Summary

Summary

1 Broad class of unconventional ballooning modes found for ES drift
waves (TEM and ITG) by gyrokinetic simulations, shown to be common in
strong gradient regime.

2 These unconventional mode structures are shown to correspond to
non-ground-state solutions of the eigen mode equation.

3 These results may have important implications for turbulent transport in
tokamaks, i.e., turbulent transport mechanism in H-mode can be rather
different from that in L-mode.
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Linear

HL-2A linear jump from L to H

Fig.6: Linear frequency and growth rate
vs. different temperature & density
gradient. Frequency has a jump from
ω > 10ωs to ω < 3ωs (a) if normalized
half width ∆/a of the pedestal larger
than 0.08 with nonuniform gradient, or
(b) if gradient parameter RL−1

T < 80 for
flatten gradient.

Figure 6: HL-2A linear jump from L to H
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Nonlinear

Nonlinear TEM (preliminary)

Figure 7: Poloidal power spectra of electrostatic potential for different time steps. NL
inverse cascading makes peaking m downshift from large number to m = 12− 38,
which close to experimental value m = 14− 33.

H. S. Xie & Y. Xiao (IFTS-ZJU) Unconventional ballooning structures Sherwood, Mar. 16-18, 2015 19 / 20



Introduction Gyrokinetic linear simulations Model theory Summary HL-2A ES

Nonlinear

Nonlinear TEM (preliminary)

Fig.8: n=05 to 25 single-n simulation;
zf=0 all n kept but zonal flow and
density removed; zf=2 all n include zonal
mode kept.

t = 800t0, dominate is n ' 20− 25 gives
m ' nq ' 65; t = 1200t0, n ' 15 gives
m ' nq ' 40; t = 2000t0, n ' 10 gives
m ' nq ' 26.

Close to multi-n results (Fig.7), reveal
multi-mode-coupling not an
important factor for m downshift as
in L-mode [e.g., Wang07, Lang08]. Figure 8: Time history of root-mean-square

of δφ(t) and electron energy flux for single-n
mode and multi-n modes NL simulations.
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