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Introduction
°
Background

Background

@ Drift waves / micro-instabilities, universally in magnetized plasmas,
believed to be cause of anomalous transport.

@ Conventional ballooning structures peak at outboard side of cross section,
with poloidal angle position 6, ~ 0. Unconventional, |6,| ~ or < 7/2 have
shown exist by several authors [Xiel2, Dickinsonl4, Singh14, Fulton14].

© We will show even more general unconventional results. Theory to
explain them is also provided.

Q To find differences of micro-instabilities between H-mode and L-mode.
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Gyrokinetic linear simulations
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Figure 1: TEMs in GTC.
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Gyrokinetic linear simulations
[e] lee]
Trapped electron modes

TEMs in GTC

Parameters: HL-2A H-mode. Single-n (n =5 — 30).

Bo = 1.35T, a = 40cm, Ry = 165¢m, g = 2.5 — 3.0, s = 0.3 — 1.0,
Ro/L+ =80 —160 and T.(r) = Ti(r), ne(r) = ni(r), n = Lo/L7+ ~ 1.0.

Most unexpected unconventional new features:

@ a. mode can have anti-ballooning structure (|0, > 7/2, e.g., Fig.1g);
@ b. mode can have multi-peak positions (e.g., Fig.1b).
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Gyrokinetic linear simulations
[e]e] o]
Trapped electron modes

TEMs Fourier 0¢,(r)

56(r,0,¢) = €S Spm(r)em?

Fig.2: Corresponding polodial cross
section mode structures of (a)-(d)
taken from Fig.1 (a), (b), (g) and
(i), respectively.
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Figure 2: R[d¢m(r)] for conventional and
unconventional mode structures.
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Gyrokinetic linear simulations
oooe
Trapped electron modes

TEMs Fourier 0¢,(r)

o Conventional §¢,, >~ d¢m1; unconventional relation between §¢,, and dp i1
no longer apparent.

o Fig.2b, several d¢,, are not Gaussian shapes as in Fig.2a; two strongest

Fourier modes in Fig.2c&d have anti-phase, i.e., §¢,, ~ —d¢pm,.
Difference of Fig.2c&d is mp = m,; + 1 in Fig.2c but mpy = m, + 3 in Fig.2d.
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Gyrokinetic linear simulations
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Figure 3: Unconventional ITG in GTC.
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Gyrokinetic linear simulations
oe
lon temperature gradient mode

ITG in GTC

@ Unconventional mode structures still exist and can be more rich. Thus,
these unconventional properties can be common for drift waves, not
limited to TEM.

@ Anti-ballooning ITG shown in Fig.3a&b. Actually, mode structures with
global profiles and multi modes co-exist in initial value simulations will be
more complicated. Two modes with similar growth rates can be excited in
different radius (Fig.3c&d). Multi modes coexist with close peaking positions
in initial simulation can also lead 6, = 6,,(t), i.e., ‘rotate’ with time.

@ These unconventional linear behaviors in GK simulations can be understood
from the below eigen analysis.
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Model theory
[ Je]
Eigen equation

Starting equation

Qualitative model theory by solve below model eigenvalue problem

2
2 0° o? 2ep ising 0
[P,W**( a*’kesx) *7(C°S9+ e a)

221 32| 00(x,0) = 0, (1)

o =¢n/(qkepi), s = 1+ n;, x = r — rs , the poloidal wave number kg = nq/r.
Eq.(1) can be derived from gyrokinetic theory with adiabatic electron assumption,
thus can be used to study ITG.
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Model theory
oe
Eigen equation

We solve...
@ 1D: Corresponding 1D equation in ballooning space
{Z—zdd—; + k3 p2[1 + s2(9 — 9k)?] + 22 [cos ¥
(9 — 0 sin 9] + ﬁ}aéw,m) —0, (2)

¥ ballooning-angle parameter.

@ 2D: Using Fourier basis 6¢(x,0) = >, ume™™, Eq.(1) can rewritten to

k2 p?s? 6552’" + Z—i(z —m)2up, — & [(1 - s%)um_l
+(1 + s%)um,l} — (% + kﬁp,?) um = 0, )

z = kgpsx. To solve eigenvalue problem Eq.(3), only several m modes need
kept.
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Model theory

®00000
Solutions

Analytical investigations

With suitable approximations, Egs.(2) & (3) reduced to Weber equation
u" + (bx? + a)u = 0, solutions

o eigenvalues a(w) = i(2/ + 1)/b(w)
@ eigenfunctions u(x) = H/(l'\/Bx)e—"bxz/2,

H, is I-th Hermite polynomial and / =0, 1,2, ..., series eigenstates.

H. S. Xie & Y. Xiao (IFTS-ZJU) Unconventional ballooning structures Sherwood, Mar. 16-18, 2015 11 /20



Model theory
O@0000
Solutions

Numerical method

e Egs.(2) & (3) to w?M3X + w?M,X + wM; X + MX = 0. Finite difference
discrete yields sparse matrices M; (i = 0,1,2,3).

e Using companion matrix, to AY = wBY, Y = [X1, X3, X3] = [X, wX, w?X],
A =[0,1,0;0,0,1;~Moy, —M;, —~M,], B = [1,0,0;0,1,0; 0, 0, Ms].

o All solutions of the system can obtained by standard matrix solver.
Advantage: can show completely solutions of the system and help to
understand transition and distribution of them.

@ Solutions in [Xiel2,Dickinson14] using iterative solver are actually only
one of solutions and usually not most unstable or most important, due to
initial guess.
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Model theory
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1D Eq.(2), unconventional >0 - g, o
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solution / # 0 or ¥, # 0. Both can T B a—- 5
happen at strong gradient. Most @ B
unstable solution ¥y # 0 has 202 EL=VrEaRErT
discussed by others (c.f., [Singh14]). " . 1 ' '

> 0f »

Fig.4: Weak gradient (¢, = 0.5), "
most unstable solution ground _
state (a&b), conventional structure. -z 0
Strong gradient (¢, = 0.2), most '
unstable solution not ground Figure 4: Eq.(2), series solutions exist. (s = 0.8,
state (c&d), unconventional. kepi = 0.4, g = 1.0, s = 3.0 and ¥ = 0)

Important Result!!!
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ic linear simulations

Introduction Gyrokine

Solutions

Eigen 2D solutions

Almost all mode structures in
Figs.1 & 3 also found in 2D
solutions Eq.(3). Two examples in
Fig.5. Thus, series conventional and
unconventional solutions found in
both 2D eigen solver and GTC initial
simulations.

Condition ¢, < ¢, critical gradient
parameter ¢, depends on other
parameters. GTC simulations HL-2A
parameters, typical critical
gradient value Ry/Lt = 40 — 120.
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Figure 5: Typical unconventional mode

structures from 2D eigen solution for Eq.(3). (b)

similar Fig.1(c&d), and (c&d) similar
Fig.3(c&d).
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Model theory
0000e0
Solutions

Physical picture

o With strong gradient the most unstable solution can shift from ground state
to other non-ground states, which is analogous to the quantum jump
between energy levels.

@ Physically, the ‘quanta’ jump behaviors can be understood from the
effective potential[Chen80]. Jump happens from one potential well to
another, which leads to different energy levels.
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Model theory
00000e
Solutions

Discussions

e Strong gradient (H-mode) / # 0 v.s. weak gradient (L-mode) / = 0, indicate
different transport behavior between H-mode and L-mode.

@ Conventional, neighboring Fourier u,,, ~ u,,.1, effective correlation length
estimated as width of radial envelope of the modes, say, AA. Whereas,
unconventional, especially anti-ballooning, v, ~ —u,41, i.e., a 180° phase
shift for neighboring Fourier, which can change correlation length to distance
of neighboring mode-rational surfaces Ars.

o Considering that Ar, < AA, we can expect that H-mode can have better
confinement.

@ However, to fully understand, systematic study of nonlinear behavior of
transport required (See backup slides, HL-2A H-mode TEM nonlinear
indeed differs from L-mode!!).
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Summary
°

Summary

Summary

@ Broad class of unconventional ballooning modes found for ES drift
waves (TEM and ITG) by gyrokinetic simulations, shown to be common in
strong gradient regime.

@ These unconventional mode structures are shown to correspond to
non-ground-state solutions of the eigen mode equation.

© These results may have important implications for turbulent transport in

tokamaks, i.e., turbulent transport mechanism in H-mode can be rather
different from that in L-mode.
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Linear

HL-2A linear jump from L to H

Fig.6: Linear frequency and growth rate
vs. different temperature & density
gradient. Frequency has a jump from
w > 10w, to w < 3ws (a) if normalized
half width A/a of the pedestal larger
than 0.08 with nonuniform gradient, or
(b) if gradient parameter RL7* < 80 for
flatten gradient.
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Figure 6: HL-2A linear jump from L to H
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Nonlinear

Nonlinear TEM (preliminary)
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Figure 7: Poloidal power spectra of electrostatic potential for different time steps. NL
inverse cascading makes peaking m downshift from large number to m = 12 — 38,
which close to experimental value m = 14 — 33.
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HL-2A ES
oe
Nonlinear

Nonlinear TEM (preliminary)
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mode and multi-n modes NL simulations.
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