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Questions To Be Addressed:1

1) What effects need to be modeled for ITER plasmas?

2) What equations need to be solved for integrated simulations?

3) How can MHD, kinetic and transport models be self-consistent?

Outline:

•Modeling ITER plasmas involves disparate ~x, t scales and issues.

• Comprehensive modeling of plasmas involves some key elements:
plasma kinetic equation with Fokker-Planck collision operator and sources,

fluid equations when t > 1/ν, Chapman-Enskog (C-E) kinetic equation,

extended MHD (ideal MHD for t < 1/ν, neoclassical MHD for t > 1/ν),

collisional-, fluctuation- and 3-D- induced fluxes via C-E kinetic equation,

and comprehensive plasma transport equations for ne, Ωtor, pe, pi and ψp.

• Need modular approach for integrated modeling of ITER plasmas.

1J.D. Callen, CEMRACS 2014 “Fluid and transport modeling of plasmas” lectures available via http://homepages.cae.wisc.edu/~callen/plasmas.

JD Callen/Sherwood Theory Conference — March 16–18, 2015, p 1



This Evolving Study Has A Long-Term Objective

•Develop a strategic vision for how the major plasma
models (MHD, kinetics, transport) that operate on a
hierarchy of sequentially longer time scales can and
should be combined into self-consistent, comprehen-
sive, integrated simulations of plasmas in present toka-
maks to develop a “predictive capability” for ITER:

what physical effects should be included?,

what equations need to be solved?,

how can they be coupled and made self-consistent?

• This presentation will:

discuss logic of combining MHD, kinetics, transport approaches,

highlight effects of diamagnetic-level flows and small 3-D fields,

focus on descriptions inside separatrix, but can be generalized.
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Characteristic Length And Time Scales In Plasmas
Span Many Orders of Magnitude (ITER and ICF)

• Projected parameters for ITER whereBt = 5.6 T, Te∼Ti∼10 keV,
ne∼1020 m−3, and major/mid-plane minor radius ' 6 m/2 m are:

Length Scales Time Scales

minimum impact distance bqmmin 10−12 m

mean particle spacing n−1/3e 2×10−7 m
Debye shielding length λDe 7×10−5 m plasma period 1/ωp 2×10−12 s
deuteron gyroradius %D 3×10−3 m deuteron gyroperiod 1/ωcD 3×10−9 s
average minor radius ā 3 m Alfvén period ā/cA 5×10−7 s

sound wave period ā/cS 4×10−6 s
collision length λe 1.2×104 m electron collision time 1/νe 2×10−4 s

deuteron collision time 1/νD 3×10−2 s
energy confinement time τE 6 s
fusion collision time 1/νfus 200 s
magnetic field diffusion τR 1000 s

Dimensionless Parameters formula ICF ITER

number of electrons in a Debye cube neλ
3
De 3.5×103 4×107

electron collision to plasma frequency νe/ωp 4×10−5 10−8

%∗: deuteron gyroradius to average minor radius %D/ā 10−3

collision length to relevant length λe/L λe/ā ∼ 0.4 λe/2πR = 320
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Integrated Simulations Should Include Many Effects

• Current ramp-up from breakdown to current flattop, smooth turnoff:

tearing-limited resistive evolution of ~J(ρ, t); NBI torque to avoid locked modes.

•MHD stability boundaries and tearing-induced topology changes:

low q95 and high βN stability limits; slowly growing tearing-induced islands.

• Use of 3-D fields to control plasma rotation and H-mode pedestals:

NTV control of toroidal plasma rotation; RMPs to mitigate/suppress ELMs.

• Heating, momentum, particle and poloidal flux sources and sinks:

core NBI, ICRF, EC; edge neutral recycling, charge-exchange, radiation etc.

• Transport evolution and control of ne, Ωtor(Eρ), Te, Ti, ψp profiles:

equil. & stiff ones, internal & H-mode transport barriers, hybrid flux pumping.

All these effects need to be validated and modeled self-consistently
to develop a predictive capability for ITER plasmas.
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MHD, Kinetics, Transport Are Usually Treated Separately

•MHD models can provide
axisymmetric equilibrium — force balances, P = P (ψp), ~B0 = I ~∇ζ+ ~∇ζ×~∇ψp;

ideal MHD stability constraints — minimum q(ψp), maximum β;

neoclassical equilibrium flows — ‖ Ohm’s law with bootstrap current, Vpol i;

magnetic reconnection of field lines at rational surfaces in dissipative MHD
— tearing instabilities, penetration of external δ ~Bs, locked modes; and

plasma amplification of external 3-D δ ~B’s that couple to least stable modes.

• Kinetic models can provide transport fluxes in ~B0 + δ ~B due to

Coulomb collisional effects — classical, neoclassical, paleoclassical;

fluctuation-induced microturbulence — ITG, TEM, KBM etc.; and

small 3-D magnetic fields — error fields, ripple, NTV, RMPs, flutter, islands.

• Plasma transport models are based on axisym. ~B0 surfaces and use

fluxes from kinetics plus sources and sinks in transport evolution equations

to determine the ρ, t behavior of plasma parameters on transport time scale.

Comprehensive integrated modeling of tokamak plasmas needs a
self-consistent theoretical framework for combining these models.
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Fundamental Equation Is Plasma Kinetic Equation (PKE)

• PKE is
dfs(~x, ~v, t)

dt
≡
∂fs

∂t
+ ~v ·

∂fs

∂~x
+

~F s

ms

·
∂fs

∂~v
= C{fs}+ S{fs}, in which

fs ≡ fs(~x, ~v, t) is the distribution function in 6-D (~x, ~v) phase space,

~F s ≡ qs(~E + ~v× ~B) is the Lorentz force on a charged particle,

C{fs} is the Fokker-Planck Coulomb collision operator which is local in ~x, and

S{fs} is source operator that represents heating, current-drive, c-x etc. effects.

•While the PKE is fundamental, the 3-D (~x) fluid moment equa-

tions for ns, ~V s, ps are

feasible, appropriate, useful and needed,

exact to extent that relevant Chapman-Enskog kinetic equation (CEKE, p 12,13)

can be solved for kinetic distortion Fs ≡ fs − fMax s(~x, ~v, t),

which then yields the needed closure and collisional moments, and

provide the basis for both extended MHD and plasma transport equations.
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Species s Fluid Moment Equations Are Useful, Needed

• The
∫
d3v (1,ms~v,msv

2/2) moments of the plasma kinetic equation
(PKE) yield the species s complete fluid moment equations :

density (∂/∂t+ ~Vs · ~∇)ns = −ns~∇·~Vs + Sns,

momentum msns(∂/∂t+ ~Vs · ~∇) ~Vs = nsqs(~E +~Vs× ~B)− ~∇ps − ~∇·↔πs + ~Rs + ~S~ps,

energy
3

2
(∂/∂t+ ~Vs · ~∇) ps = −

5

2
ps~∇·~Vs + ps ṡMs, or,

entropy (∂/∂t+ ~Vs · ~∇) sMs = ṡMs ≡ (−~∇· ~qs −
↔
πs : ~∇~V s +Qs + Sεs)/ps,

in which the species s isotropic-Maxwellian-based collisional entropy is

sMs(~x, t) ≡ −
1

n

∫
d3v fiMs ln fiMs =

3

2
ln

(
ps

n5/3

)
+ C, collisional entropy.

• But equations are incomplete until these “closures” are specified:

stress
↔
πs, heat flux ~qs ; collisional friction force ~Rs, energy exchange Qs.
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Modeling Tokamaks Employs Some Key Approximations

• The fundamental approximation used in modeling tokamak plas-
mas is that the gyroradii (%i ≡ vT i/ωci) of the charged ions in

the magnetic field ~B are small compared to macroscopic gradient
scale lengths L ∼ 1/|~∇ ln(B,n, T )|, i.e., %∗ ≡ %i/L � 1. This
facilitates analyses on a hierarchy of ever longer time scales:

%0
∗: parallel (to ~B) guiding center motion, Alfvén and sound waves (∼ µs),

%1
∗: particle drifts across the magnetic field, fluid descriptions, collisional effects
on species flows in flux surfaces, magnetic reconnection ( >∼ ms), and finally

%2
∗: transport of plasma across magnetic field lines and flux surfaces due to
collisions, radially localized microturbulence and 3-D field effects ( >∼ s).

• Sequential %∗ orders cause momentum balance component effects:

%0
∗,
~∇ψp · ⇒MHD comp. Alfvén waves enforce (∼ 0.4µs) radial force balances,

%1
∗,
~B0 · ⇒ drifts, neoclassical MHD flows within ψp surfaces (e 0.2 ms, i 30 ms),

%2
∗, ~eζ · ⇒ toroidal torques on plasma cause radial transport fluxes (τE ∼ 6 s).
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Extended MHD Model Includes Ideal MHD And The
Dissipative Effects Of Closure And Collisional Moments

• The extended MHD equations for a magnetized plasma are ob-
tained by summing the fluid moment equations over species. To-
gether with equations for the magnetic field they are

Extended MHD plasma description (for ideal MHD ~Re,
↔
Π,

↔
πe,

∑
s ṡMs → 0):

mass density (∂/∂t+ ~V ·~∇) ρm = − ρm~∇·~V ,

charge continuity ~∇ · ~J = 0,

momentum ρm(∂/∂t+ ~V ·~∇)~V = ~J× ~B − ~∇P − ~∇ ·
↔
Π,

Ohm’s law ~E = − ~V× ~B + ~Re/nee+ ( ~J× ~B − ~∇pe − ~∇ ·↔πe)/nee,

equation of state (∂/∂t+ ~V ·~∇) ln(P/ρ5/3
m ) =

∑
s ṡMs.

Maxwell equations for extended MHD (no Gauss’ law, ~E from Ohm’s law):

Faraday’s law ∂ ~B/∂t = − ~∇×~E,

no magnetic monopoles ~∇ · ~B = 0,

nonrelativistic Ampere’s law ~J = ~∇× ~B/µ0.
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Extended MHD Equations Produce Many Effects

• Ideal MHD in a lowest order axisymmetric tokamak provides

equilibrium radial force balance that is enforced by compressional Alfvén waves
on ā/cA ∼ 0.5µs time scale and yields Grad-Shafranov equation for ψp,

frozen flux theorem ( ~B advects with ~V⊥) due to ~E + ~V× ~B = ~0 Ohm’s law,

ideal MHD constraints for kink (min q), ~∇P -driven (max β) stability, and

amplification of driven 3-D perturbations that couple to least stable modes.

• Two-fluid MHD causes a diamagnetic-level flow constraint because
~∇ψp · its Ohm’s law ~E+~V× ~B = ~∇pi/niqi yields relation between flows in surface

Ωtor ≡ ~Vi ·~∇ζ = −
(
∂Φ0

∂ψp

+
1

niqi

∂pi

∂ψp

)
+ q ~V i ·~∇θ =⇒ Vtor '

Eρ

Bp

−
1

niqiBp

dpi

dρ
+
Bt

Bp

Vpol i .

• Extended MHD with collision-based closures for t > 1/ν leads to

reconnection of field lines in dissipative singular layers at rational surfaces,

classical and neoclassical tearing-type instabilities =⇒ magnetic islands,

FSA ‖ neo Ohm’s law 〈 ~B0 · ~E
A
〉 = ηnc

‖

[
〈 ~B0 · ~J〉 − 〈 ~B0 · ~Jdrives〉

]
, for t > 0.2 ms,

poloidal ion flow damped to V nc
pol i ' (cp/qiB) (dTi/dρ), cp ' 1.17, for t > 30 ms,

3-D ~B field modifications and their effects — error field locking, NTV, RMPs.
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Extended MHD Constraints Should Be Used In Kinetics

• Lowest order constraints for MHD stable plasmas:

%0
∗: axisymmetric magnetic field ~B0 ≡ I ~∇ζ+ ~∇ζ×~∇ψp = ~∇ψp×~∇(q θ−ζ), with

poloidal magnetic flux surfaces ψp determined from Grad-Shafranov equation,

%1
∗: a consistency relation between the flows of Vtor ' Eρ

Bp
− 1

niqiBp

dpi
dρ

+ Bt
Bp
Vpol i

— which does not determine the electric field Eρ or plasma toroidal
rotation frequency Ωtor ' Vtor/R, but provides a relation between them.

• First order (%1
∗) extended MHD “equilibrium effects” for tearing-

mode stable plasmas that could be used to speed convergence:

Equilibrium Maxwellian distribution could include the following %∗ flows:

parallel electron flow that yields the FSA ‖ neoclassical Ohm’s law, and

the neoclassical poloidal ion flow V nc
pol i.

A magnetic field structure ~B = ~B0 + δ ~B in which the %∗ perturbations δ ~B

are nonzero in dissipative singular layers near rational surfaces, and

are driven in plasma outside them by small externally-imposed 3-D fields.
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Use Chapman-Enskog Approach For Kinetic Equation

• Chapman-Enskog Ansatz posits species distribution function has
two parts — “dynamic” space- and time-dependent Maxwellian
fM with parameters n(~x, t), ~V (~x, t), T (~x, t) plus kinetic distortion F :

f(~x, ~v, t) = fM(~x, ~v, t) + F (~x, ~v, t), in which dynamic Maxwellian is

fM(~x, ~v, t) = fM[n(~x, t), ~V (~x, t), T (~x, t), ~v] =
n(~x, t) e−m [~v−~V(~x,t)]2/2T (~x,t)

[2π T (~x, t)/m]3/2
.

• Substituting this Ansatz into the plasma kinetic equation yields

dF

dt
− C{f} − S{f} = −

dfM

dt
, general Chapman-Enskog kinetic equation,

dfM

dt
= fM

[
−

1

p
~vr ·

(
nq [~E +~V× ~B]− ~∇p−mn (

∂

∂t
+~V ·~∇)~V

)
forces

+

(
mv2

r

2T
−

5

2

)
1

T
~vr · ~∇T T gradient

+
m

T

(
~vr~vr−

v2
r

3
I

)
:W, W ≡

1

2
[~∇~V +(~∇~V )T−

2

3
I ~∇·~V ] rate of strain

+
Sn

n
+

(
mv2

r

2T
−

3

2

)(
2 ṡM

3 p
−
Sn

n

) ]
. xport sources
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Chapman-Enskog Approach Is Useful And Important

• Chapman-Enskog kinetic equation (CEKE) on preceding page is
still exact since no approximations or truncations have been made.

• Lowest order drift-kinetic CEKE obtained by using momentum
equation from p 7 and gyro-averaging yields (b̂ ≡ ~B/B0)

2,3,4

∂F

∂t
+ (v‖ b̂ + ~vd) ·

∂F

∂~x
− C{fM + F} − S{fM + F}

= fM

[(
mv2

2T
− 5

2

)
v‖ b̂ · ~∇ ln T + m

T

(
v2‖ −

v2⊥
2

)
[ b̂ · (b̂ ·~∇)~V − ~∇·~V/3]− v‖

p
b̂ · [~∇·↔π‖ − ~R]

]
.

A more general gyrokinetic version is needed to include k⊥%i ∼ 1 physics.

• Since by construction
∫
d3v (1, ~v, v2

r)F = 0,

the kinetic distortion F does not produce any extraneous δn, δ~V or δp.

Hence it produces no δ ~J , which is consistent with extended MHD since
~J = ~∇× ~B is “owned” by the Maxwell and MHD equations.

• The ~qs,
↔
πs, ~Rs, Qs velocity-space closure and collisional moments

~q ≡
∫
d3v ~v

(
mv2

2 T
− 5

2

)
F ,

↔
π ≡

∫
d3vm(~v~v− v2I/3)F , ~R ≡

∫
d3vm~v C{F}, Q ≡

∫
d3vmv

2

2
C{F}

will be consistent with extended MHD and transport equations.
2Z. Chang and J.D. Callen, “Unified fluid/kinetic description of plasma micronstabilities. Part I,” Phys. Fluids B 4, 1167 (1992).
3S. Bruner, E. Valeo, J.A. Krommes, “Collisional delta-f scheme with evolving background for transport time scale simuls,” Phys. Pl. 6, 4504 (1999).
4J.J. Ramos, Phys. Pl. 17, 082502 (2010); J.J. Ramos, Phys. Pl. 18, 102506 (2011); B.C. Lyons, S.C. Jardin, J.J. Ramos, Phys. Pl. 19, 082515 (2012).
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There Can Be Inconsistency Issues With Gyrokinetics

• The gyrokinetic formalism, in its usual implementations, is incon-
sistent with extended MHD and transport equations because

it is based on the reduced MHD axisymmetric magnetic field representation
which neglects compressional Alfvén wave constraints on Vtor and evolving ~B,

its “drive” terms are of the form ~vd ·~∇fMax which is not consistent with
Chapman-Enskog-type drives [∼ ~v·(nq ~E − ~∇p), ~v·~∇T , (~v~v − (v2/3)I) :W];

thus, its “input” does not include many Vtor, 3-D δ ~B effects and its “output
fluxes” will be inconsistent with the tokamak plasma transport equations.

•Most gyrokinetic studies concentrate on microturbulence & fluxes
caused by particle drifts across axisymmetric surfaces and they

employ a large Vtor ' Eρ/Bp approximation plus diamagnetic flow but neglect
the ion poloidal flow in the radial force balance (Vtor) equation,

concentrate on high n modes and do not treat low n global modes well
because such modes require ~J = ~∇× ~B/µ0 with ∂ ~B/∂t = ~∇×~E in which ~E
is from Ohm’s law plus there are dissipative layer effects at rational surfaces,

treat non-ambipolar transport fluxes inconsistently — magnetic flutter
determines local Eρ but many other non-ambipolar transport effects
(e.g., ⊥ viscous, 3-D and NBI torques) are neglected in Eρ determination.
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Tokamak Plasma Transport Equations Include Many Effects

• Transport equations for ne, Ltor ≡ ρm〈R2〉Ωtor, ps, ψp with sources:5

density
1

V ′
∂

∂t

∣∣∣∣
ψp

neV
′ + ρ̇ψp

∂ne

∂ρ
+

1

V ′
∂

∂ρ
(V ′Γ) = 〈Sn〉,

toroidal momentum
1

V ′
∂

∂t

∣∣∣∣
ψp

LtorV
′ + ρ̇ψp

∂Ltor

∂ρ
+

1

V ′
∂

∂ρ
(V ′Πρζ) = 〈~eζ · ( ~J× ~B − ~∇·

↔
Π + ~S~p )〉,

energy
3

2
ps
∂

∂t

∣∣∣∣
ψp

ln psV
′5/3 +

3

2
ρ̇ψp

∂ps

∂ρ
+

1

V ′
∂

∂ρ
(V ′Υs) + 〈~∇· ~q pc

∗s 〉 = Qnet s,

poloidal flux
∂ψp

∂t

∣∣∣∣
ψt

= Dη ∆+ψp − Sψp
, Dη ≡

ηnc
‖

µ0

, Sψp
=
∂Ψp

∂t
+

ηnc
‖

I〈R−2〉
〈 ~B0· ~Jdrives〉.

• There are many classes of effects in plasma transport equations:
transients in the poloidal flux ψp via ∂/∂t|ψt and advection of ψp surfaces

relative to the toroidal-flux-based radial coordinate ρ via ρ̇ψp ≡ ψ̇p/ψ
′
p,

transport fluxes of ambipolar density Γ, total momentum Πρζ and heat Υs, ~q
pc
∗s

“radially” across ψp poloidal flux surfaces that have many contributions
induced by collisions, microturbulence and 3-D effects on each species s,

toroidal (~eζ ≡ R2~∇ζ) plasma torques caused by ~J× ~B and viscous stresses ~∇·
↔
Π,

ambipolar density 〈Sn〉, toroidal momentum 〈~eζ · ~S~p〉 and energy 〈Sε〉 sources
that contribute to the net energy heating rate Qnet s, which includes Joule
and external heating sources (NBI, ICRH, ECH etc.) plus radiation losses.

5J.D. Callen, C.C. Hegna, and A.J. Cole, “Transport equations in tokamak plasmas,” Phys. Plasmas 17, 056113 (2010).
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Plasma Toroidal Rotation Equation Includes 3-D Effects

• The magnetic field will be represented in ψp, θ, ζ coordinates by

~B = ~B0(ψp, θ)︸ ︷︷ ︸
2D, axisymm.

+
∑
n,m 6=0

δ ~Bn(ψp,m) cos (mθ − nζ − ϕm,n)︸ ︷︷ ︸
low m,n resonant, non-resonant

+ δ ~BN(ψp, θ) cos(Nζ)︸ ︷︷ ︸
medium n, ripple

+ · · ·︸︷︷︸
µturb.

.

• On µs time scale compressional Alfvén waves enforce radial force balance:

Ωtor ≡ ~Vi ·~∇ζ = −
(
∂Φ0

∂ψp

+
1

niqi

∂pi

∂ψp

)
+ q ~V i ·~∇θ =⇒ Vtor '

Eρ

Bp

−
1

niqiBp

dpi

dρ
+
Bt

Bp

Vpol i.

• On the ms time scale poloidal flow is damped to V nc
pol i ' (cp/qi)(dTi/dψp).

• Toroidal plasma torques cause radial particle fluxes: ~eζ · ~Force = − qs~Γs · ~∇ψp.

• Setting the total radial plasma current induced by sum of the non-ambipolar

particle fluxes to zero yields transport equation5,6 for plasma toroidal angular

momentum density Ltor ≡
∑

ionsmini〈R2~V i ·~∇ζ〉, Ωtor(ρ, t) ≡ Ltor/mini〈R2〉 :

∂Ltor

∂t︸ ︷︷ ︸
inertia

' −〈~eζ ·~∇·
↔̄
π

3D

i‖ 〉︸ ︷︷ ︸
NTV from δB

+ 〈~eζ · δ ~J×δ ~B〉︸ ︷︷ ︸
resonant FEs

− 〈~eζ·~∇·
↔̄
πi⊥〉︸ ︷︷ ︸

cl, neo, paleo

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress6

+ 〈~eζ ·
∑

s
~̄S~ps〉︸ ︷︷ ︸

mom. sources

.

• Radial electric field for net ambipolar transport is determined by Ωtor (from Ltor):

Eρ ≡ − |~∇ρ| ∂Φ0/∂ρ ' |~∇ρ| [ Ωtorψ
′
p+(1/ni0qi) dpi/dρ− (cp/qi) dTi/dρ], ψ′p ' RBp.

6J.D. Callen, A.J. Cole, C.C. Hegna, “Toroidal flow and radial paricle flux in tokamak plasmas,” Phys. Pl. 16, 082504 (2009); Err. 20, 069901 (2013) .
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3-D Field Effects In Toroidal Momentum Equation

• General transport equation for toroidal angular momentum den-
sity Ltor ≡ ρm〈R2〉Ωtor is6

toroidal momentum
1

V ′
∂

∂t

∣∣∣∣
ψp

LtorV
′ + ρ̇ψp

∂Ltor

∂ρ
+

1

V ′
∂

∂ρ
(V ′Πρζ) = 〈~eζ ·

(
~J× ~B − ~∇·

↔
Π + ~S~p

)
〉,

• Small 3-D field (|δ ~B|/B0 ∼ %∗) effects come about in many ways:7

externally applied resonantm/n ' q and non-resonant fields cause field error

(FE, 〈~eζ · ~J× ~B〉) and neo. toroidal viscous (NTV, 〈~eζ ·~∇·
↔
Π‖〉) damping of Ωtor,

toroidal magnetic field “ripple” b̂0 · δ ~BN caused by the finite number of coils
that produce the toroidal magnetic field, which damps Ωtor via NTV,

externally applied edge resonant magnetic perturbations (RMPs) used to
modify the pressure profile there and stabilize edge MHD instabilities, and

spontaneous magnetic perturbations in the plasma which are caused by
extended MHD macroscopic plasma instabilities that are controlled,
e.g., neoclassical tearing modes (NTMs) or resistive wall modes (RWMs).

7J.D. Callen, topical review on “Effects of 3D magnetic perturbations on torodal plasmas,” Nucl. Fusion 51, 094026 (2013).
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Differences From Present Approaches Are Suggested

• The fluid moment equations should be accepted as the basis for
self-consistent and comprehensive modeling of tokamak plasmas.

• Extended MHD should be used to ensure macroscopic stability,
and provide %∗ order flows in flow-shifted Maxwellian equilibrium
plus evolving ~B field for Chapman-Enskog-based kinetic analysis.

• Gyrokinetic community should accept that its role is not to “do
everything” but use flows and ~B from extended MHD as “input”
and produce closure moments for transport equations as “output.”

• The tokamak plasma transport equations for electron density ne,
plasma toroidal rotation frequency Ωtor(Eρ), species pressures ps
and poloidal flux ψp should all be solved for simultaneously, i.e.,
Ωtor(Eρ) should not just be obtained from experimental data.

• This modular approach needs to be iterated in order to obtain
self-consistency between the MHD, kinetic and transport models.
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SUMMARY: Need Fluid-Based Modular Approach

• Plasma kinetics is fundamental, but for time scales longer than
species collision times (i.e., t > 1/νs) 3-D (~x) fluid equations
(extended MHD and transport) are feasible, appropriate, useful
and needed. They are exact to extent that the relevant Chapman-
Enskog kinetic equation (CEKE) can be solved for the kinetic
distortion Fs which yields needed closure and collisional moments.

• Integrated simulations of tokamak plasmas need modular approach:

use small gyroradius expansion to order tokamak time scales, especially in the

radial, parallel, and toroidal components of the plasma force balances,

use extended MHD to check macrostability, and solve for order ρ∗ flows plus

evolving ~B field with reconnection regions and plasma responses to 3-D fields,

solve relevant CEKE in flowing equilibrium and evolving ~B field to obtain

collision-, fluctuation- and 3-D- induced closures and transport fluxes,

solve tokamak plasma transport equations for ne, Ωtor(Eρ), pe, pi, ψp,

and iterate MHD, CEKE, closures and transport steps for self-consistency.
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